cover 24.01.2017

Cover AM Isabel official kl

cover 11.2016

Cover RSC Shin 2017

AMI Alex Cover 2014 kl

Erica AdvMater Cover 2013 kl

erc ohne

Logo EXIST png

Bundesministerium für Wirtschaft und Energie Logo.svg

66. Droplet Microarray Based on Superhydrophobic-Superhydrophilic Patterns for Single Cell Analysis

 

, , and

 
Microarrays, 2016, 5, 28
 
 
Single-cell analysis provides fundamental information on individual cell response to different environmental cues and is a growing interest in cancer and stem cell research. However, current existing methods are still facing challenges in performing such analysis in a high-throughput manner whilst being cost-effective. Here we established the Droplet Microarray (DMA) as a miniaturized screening platform for high-throughput single-cell analysis. Using the method of limited dilution and varying cell density and seeding time, we optimized the distribution of single cells on the DMA. We established culturing conditions for single cells in individual droplets on DMA obtaining the survival of nearly 100% of single cells and doubling time of single cells comparable with that of cells cultured in bulk cell population using conventional methods. Our results demonstrate that the DMA is a suitable platform for single-cell analysis, which carries a number of advantages compared with existing technologies allowing for treatment, staining and spot-to-spot analysis of single cells over time using conventional analysis methods such as microscopy.

jornal 65

 file pdf

 

 

Back 

Contact

Dr. Pavel Levkin   
Build.: 341 / Office: 154 
E-Mail: levkin@kit.edu
Tel:  +49-721-608-29175

KIT Adress

Karlsruhe Institute of Technology (Campus North)
Institute of Toxicology and Genetics - Geb. 341
Hermann-von-Helmholtz-Platz 1
76344 Eggenstein-Leopoldshafen, Germany