2024 01DigitalTwin Joaquin

adma201870338 gra 0001 m

2021 Wenxi Small cover

Cover RSC Shin 2017

cover 11.2016

cover 24.01.2017

Cover AM Isabel official kl

AMI Alex Cover 2014 kl

Erica AdvMater Cover 2013 kl

Bundesministerium für Wirtschaft und Energie Logo.svg

Logo EXIST png

erc ohne

 53. Combinatorial Approach to Nanoarchitectonics for Nonviral Delivery of Nucleic Acids

 

M. Molla, P.A. Levkin


Adv. Mater., 2015, 28, 1159-1175

 

Nanoparticles based on cationic polymers, lipids or lipidoids are of great interest in the field of gene delivery applications. The research on these nanosystems is rapidly growing as they hold promise to treat wide variety of human diseases ranging from viral infections to genetic disorders and cancer. Recently, combinatorial design principles have been adopted for rapid generation of large numbers of chemically diverse polymers and lipids capable of forming multifunctional nanocarriers for the use in gene delivery applications. At the same time, current high-throughput screening systems as well as convenient cell assays and readout techniques allow for fast evaluation of cell transfection efficiencies and toxicities of libraries of novel gene delivery agents. This allows for a rapid evaluation of structure-function relationship as well as identification of novel efficient nanocarriers for cell transfection and gene therapy. Here, the recent contribution of high-throughput synthesis to the development of novel nanocarriers for gene delivery applications is described.

 journal 50

Backfile pdf

Contact

Prof. Dr. Pavel Levkin   
Build.: 319 / Office: 444 
E-Mail: levkin@kit.edu
Tel:  +49-721-608-29175

Statistics

  • Articles View Hits 725472

NOTE! This site uses cookies and similar technologies.

If you not change browser settings, you agree to it. Learn more

I understand

On this website we use cookies for a better die usability. If you click on other pages you you agree with this.

In some instances, our website and its pages use so-called cookies. Cookies do not cause any damage to your computer and do not contain viruses. The purpose of cookies is to make our website more user friendly, effective and more secure. Cookies are small text files that are placed on your computer and stored by your browser.

Most of the cookies we use are so-called “session cookies.” They are automatically deleted after your leave our site. Other cookies will remain archived on your device until you delete them. These cookies enable us to recognise your browser the next time you visit our website.

You can adjust the settings of your browser to make sure that you are notified every time cookies are placed and to enable you to accept cookies only in specific cases or to exclude the acceptance of cookies for specific situations or in general and to activate the automatic deletion of cookies when you close your browser. If you deactivate cookies, the functions of this website may be limited.

Cookies that are required for the performance of the electronic communications transaction or to provide certain functions you want to use (e.g. the shopping cart function), are stored on the basis of Art. 6 Sect. 1 lit. f GDPR. The website operator has a legitimate interest in storing cookies to ensure the technically error free and optimised provision of the operator’s services. If other cookies (e.g. cookies for the analysis of your browsing patterns) should be stored, they are addressed separately in this Data Protection Declaration.